skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Edmunds, Peter_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The high demand for information on how coral reefs are changing often exceeds the capacity of the scientific community to deliver the data necessary to meet this need. However, given the degraded state of coral reefs and the poor prognosis for their recovery, it is reasonable to ask whether coral reef monitoring should continue. Using my experiences from a 37-year study in the US Virgin Islands, I highlight the information that monitoring conveys on the changing state of coral reefs, and underscore how the interpretation of ecological trends matures with increasing longevity of records. Because the past is an imperfect predictor of the future, monitoring coral reefs remains an important endeavor. It offers the only opportunity to understand how reefs will continue to change, to connect patterns of change to the processes causing them to occur, and to create opportunities for management to best ensure their future. 
    more » « less
  2. Abstract The abundance of many Caribbean corals has declined over the past few decades, yet nowPorites astreoidesis more common on many shallow reefs than in the 1980s and shows evidence of local adaptation. We compare the small‐scale (1–8000 m) genetic structure of this brooding species and the broadcasting coralOrbicella annularison reefs (<14 m depth) in St. John, US Virgin Islands, to examine how larval dispersal and asexual propagation contribute to the retention of genotypes within reefs. Populations ofP. astreoideshave genetic structure across reefs separated by a few 100 m, increased relatedness within reefs, and parthenogenetic larval propagation confirmed by parent–offspring genotyping. Within reefs,P. astreoidescolonies <1 m apart are more related, independent of clonal reproduction, than corals at greater distances. In contrast,O. annularislacks across‐reef genetic structure, has low relatedness within and among reefs, and does not produce asexual larvae. Small‐scale genetic structure and high relatedness inP. astreoidesare evident even without considering asexual propagation, but asexual reproduction enhances these differences. Neither species shows the genetic signature of inbreeding or reduced genotypic diversity despite the high within‐site relatedness ofP. astreoides. Monitoring on these reefs from 1987 indicates thatPoriteshas increased in abundance whileOrbicellahas decreased in abundance. The success ofPoritesis due to greatly increased settlement and recruitment compared withOrbicella. Together these results indicate that high numbers of locally retained and successful genotypes might explain the relative success ofPoriteson shallow, present‐day reefs in the Caribbean. 
    more » « less
  3. Abstract Variation among functionally similar species in their response to environmental stress buffers ecosystems from changing states. Functionally similar species may often be cryptic species representing evolutionarily distinct genetic lineages that are morphologically indistinguishable. However, the extent to which cryptic species differ in their response to stress, and could therefore provide a source of response diversity, remains unclear because they are often not identified or are assumed to be ecologically equivalent. Here, we uncover differences in the bleaching response between sympatric cryptic species of the common Indo‐Pacific coral,Pocillopora. In April 2019, prolonged ocean heating occurred at Moorea, French Polynesia. 72% of pocilloporid colonies bleached after 22 d of severe heating (>8oC‐days) at 10 m depth on the north shore fore reef. Colony mortality ranged from 11% to 42% around the island four months after heating subsided. The majority (86%) of pocilloporids that died from bleaching belonged to a single haplotype, despite twelve haplotypes, representing at least five species, being sampled. Mitochondrial (open reading frame) sequence variation was greater between the haplotypes that experienced mortality versus haplotypes that all survived than it was between nominal species that all survived. Colonies > 30 cm in diameter were identified as the haplotype experiencing the most mortality, and in 1125 colonies that were not genetically identified, bleaching and mortality increased with colony size. Mortality did not increase with colony size within the haplotype suffering the highest mortality, suggesting that size‐dependent bleaching and mortality at the genus level was caused instead by differences among cryptic species. The relative abundance of haplotypes shifted between February and August, driven by declines in the same common haplotype for which mortality was estimated directly, at sites where heat accumulation was greatest, and where larger colony sizes occurred. The identification of morphologically indistinguishable species that differ in their response to thermal stress, but share a similar ecological function in terms of maintaining a coral‐dominated state, has important consequences for uncovering response diversity that drives resilience, especially in systems with low or declining functional diversity. 
    more » « less